Заседания

    14 февраля 2023 г., Вторник, 19:00 Заседание № 788

    Иллюзия квантовой запутанности

    Докладчик: Миркин В.И.

    Mirkin V.IМиркин Владислав Иосифович, Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.

    к.т.н., Институт Интеграционных Исследований, Израиль.

    Дискуссия о квантовой запутанности частиц возникла еще на заре становления квантовой механики как науки. Наиболее отчетливо ее сформулировали А. Эйнштейн, Б. Подольский и Н. Розен в 1935 году, сформулировав парадокс, названный их именем (ЭПР-парадокс). Парадокс заключался в том, что либо ученые должны были признать, что квантовая механика неполна, и следует искать некие скрытые параметры, либо частицы обмениваются информацией с бесконечной скоростью, что противоречило предыдущим представлениям. Только после доказательства теорем Дж. Белла (1964, 1966 годы) возникли условия, позволяющие разрешить этот парадокс экспериментально.

    Нобелевская премия по физике в 2022 году присуждена Джону Клаузеру, Алану Аспе и Антону Цайлингеру за выдающиеся эксперименты по разрешению данного парадокса (в докладе сделан анализ этих экспериментов), «окончательно» установившие, что между частицами в микромире существует некая связь, которую и следует считать квантовой запутанностью. Однако такое мнение можно считать преждевременным, поскольку не учтена возможность наличия некой среды, которая способна влиять на взаимодействие частиц, коррелируя их характеристики. Величие проведенных экспериментов не в том, что они установили нечто невозможное, а в том, что они показали наличие такой среды.

    В докладе показано, что такой средой является эфир, все частицы которого в объеме Вселенной заряжены единым знаком электрического заряда.

    Публикации по теме доклада

    1. Einstain A., Podolsky B., Rosen N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. Vol. 47. Pp. 777-780, 1935. (Скачать)
    2. Дж. Гринштейн, А.Зайонц. Квантовый вызов. Издательский дом Интеллект, 2008. (Скачать)
    3. Bell J. On the Einstain-Podolsky-Rosen paradox. Physics. Vol.1.Pp. 195-200, 1964. (Скачать)
    4. Bell J. On the problem of hidden variables in quantum mechanics. Rev. Med. Phys. Vol. 38. Pp. 447-452, 1966. (Скачать)
    5. Clauser J.F., Home M.A., Shimony A., Holt R.A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. Vol. 23. Pp. 880-884, 1969. (Скачать)
    6. Freedman S.J., Clauser J.F. Experimental tesdt of local hidden-variable theories. Phys. Rev. Lett. Vol. 28. Pp. 938-941, 1972. (Скачать)
    7. Clauser J.F., Shimony A. Bell’s theorem experimental tests and implications. Prog. Phys. Vol. 41. Pp. 1881-1927, 1978. (Скачать)
    8. Lamehi-Rachti M., Mitting W. Quantum mechanics and hidden variables. Phys. Rev. Vol. 14. Pp. 2543-2555, 1976. (Скачать)
    9. Kasday L.R., Ulman J.D., Wu C.S. Angular correlation of Compton-scattered annihilation photons and hidden variables. Nuovo Cimento. Vol. 25B. Pp. 633-661, 1975. (Скачать)
    10. Aspect A., Granger P., Roger G. Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. Vol. 47. Pp.460-463, 1981. (Скачать)
    11. Aspect A., Granger P., Roger G. Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedanken experiment: A new violation of Bell’s inqalities. Phys. Rev. Lett. Vol. 49. Pp.91-94, 1982. (Скачать)
    12. Aspect A., Dalibard J., Roger G. Experimental tests of Bell’s inqualities using time-varying analizers. Phys. Rev. Lett. Vol. 49. Pp.1804-1808, 1982. (Скачать)
    13. Bohm D., Aharonov Y. Discussion of experimental proof for the paradox of Einstain-Podolky-Rosen. Phys. Rev. Vol. 108. Pp. 1070-1076, 1957. (Скачать)
    14. Greenberger D.M., Horne M.A., Zeilinger A. Going beyond Bell’s theorem. Bell’s theorem, quantum theory and conceptions of the universe. Springer, Dordrecht, 1989. Pp. 69-72. (Скачать)
    15. Greenberg D.M., Home M.A., Shimony A., Zeilinger A. Bell’s theorem without inequalities. Amer. J. Phys. Vol. 58. Pp. 1131-1143, 1990. (Скачать)
    16. Bouwmeester D., Pan J.-W., Daniel M., Weinfurter H., Zeilinger A. Observation of three-photon Greenberg-Home-Zeilinger entanglement. Phys. Rev. Lett. Vol. 82. Pp. 1345-1349, 1999. (Скачать)
    17. Pan J.-W., Bouwmeester D., Daniel M., Weinfurter H., Zeilinger A. Experimental test of quantum nonlocalty in three-photon Greenberg-Home-Zeilinger entanglement. Nature. Vol. 403. Pp. 515-519, 2000. (Скачать)
    18. Scheidl et al. Violation of local realism with freedom of choice. PNAS. 2010. Vol. 107, №46. Pp.19708-19713. (Скачать)
    19. Aharonov Y., Bohm D. Significance of electromagnetic potential in the quantum theory. Phys. Rev. Vol. 115. 485-491, 1959. (Скачать)
    20. Миркин В.И. Не темная материя. Химия и Жизнь. 2008. №5. С. 16-19. (Скачать)
    21. Миркин В.И. Химеры физики и борьба с ними. 2020. 497 с. http://mirkin.iri-as.org/(Скачать)
    22. Миркин В.И. Квантовые иллюзии. 2021. 246 с. http://mirkin.iri-as.org/(Скачать)
    07 февраля 2023 г., Вторник, 19:00 Заседание № 787

    «Прорывной эксперимент» по обнаружению самораспада протона (тезисы проекта)

    Godarev Lozovsky M.G2Годарев-Лозовский Максим Григорьевич, Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.

    председатель СПб Философского клуба Российского философского общества, Дом ученых в Лесном, руководитель научно-философского семинара Российского философского общества в СПб.

    Под самораспадом протона мы будем подразумевать не процессы бета-распада атомных ядер и слабые распады элементарных частиц, но исчезновение самой внутренней структуры протона и выделение всей энергии его внутренней связи.

    Самораспад протона не противоречит фундаментальным основам физики и его можно обнаружить. Констатируя это, С. Вайнберг не ставит вопрос о том, каковы должны быть свойства самой проверяемой массы? [С. Вайнберг, с.154-158]. Мы полагаем, что в этом решающем обстоятельстве заключен ключ к успеху.

    Стабильными, с точки зрения наблюдений, условно полагают ядра, самораспад которых не удалось экспериментально обнаружить до настоящего времени. Можно ли считать, что, например, стабильное ядро 126Te живет дольше ядра 128Te, обладающего самым длительным из подтвержденных периодом полураспада? Нет, нельзя: просто существуют вещества с определенным и неопределенным периодами полураспада, а ученый, прежде всего, должен исходить из определенного и известного ему. Возьмем распадающееся в настоящий момент времени конкретное ядро 128Te, в который входил тот или иной конкретный протон, уже проживший, допустим, 1031лет. Известно, что период полураспада примерно на 30,7 % короче, чем среднее время жизни конкретного микрообъекта из некоторой совокупности однотипных частиц. Но, ведь, он, т.е. этот самый протон, уже существовал в прошлом в этом самом ядре первичного нуклида128Te значительно длительнее периода его полураспада, т.е. значительно более 2,25*1024 лет!

    Новый эксперимент по обнаружению самораспада протона

    Определенно: чаще раньше распадается ядро, а протон продолжает своё существование, но в исключительно редких случаях теоретически возможна обратная последовательность: самораспад протона предваряет момент распада ядра. Что же необходимо для обнаружения самораспада протона?

    1. Иметь достаточную массу распространенного в природе изотопа 128Te с самым длительным из известных подтвержденным периодом полураспада ядра: 2,25(9)*1024 лет. (Однако, все описанные в статье С. Вайнберга эксперименты проводились не на ядрах, с подтвержденным и длительным периодом полураспада, т.е. в качестве проверяемой массы использовались вода, железо, бетон, жидкий сцинтиллятор и др. [С. Вайнберг, с.170-171]).  
    2. Иметь чувствительную специальную аппаратуру.
    3. Исключить побочные эффекты космических излучений.
    4. Уметь теоретически различать излучения, возникающие как при распаде ядра, так и при возможном самораспаде протона.
    5. Уметь экспериментально различать самораспад протона, предваряющий распад ядра и, например, слабые взаимодействия. Самораспад протона будет отличать от обычной радиоактивности гораздо большее количество выделяемой энергии.
    6. Успех предполагаемого эксперимента связан с предварительным приблизительным определением вероятности опережения распада ядра, самораспадом протона. 
    7. Кроме предполагаемой величины энергии, выделяемой при самораспаде протона, необходимо иметь предполагаемые свойства допустимых его продуктов.

    Думается, что все перечисленные условия не являются непреодолимым препятствием для высокообразованных, чрезвычайно грамотных и глубоко мыслящих российских теоретиков и экспериментаторов. Были бы желание и вера в успех. Или всегда западные ученые будут непременно опережать наших родных, российских? 

    Выводы и обобщения

    1. В соответствии с длиной волны де Бройля протона и вариационными принципами: конкретному и индивидуальному протону, присутствующему в конкретном индивидуальном ядре, нет оснований без известных причин менять ядро своего пребывания в течении времени жизни этого ядра. Уточним: принцип неразличимости частиц – это не онтологический принцип, но принятый исключительно из удобства описания.
    2. Закономерный индивидуальный момент распада определенного и конкретного ядра атома обусловлен закономерной длительностью его индивидуальной жизни в определенных и конкретных условиях его среды (внутренней и внешней).
    3. Ядра с большим подтвержденным периодом полураспада имеют определенно большую длительность жизни, чем: а) ядра с меньшим подтвержденным периодом полураспада; б) ядра, не обладающие подтвержденным периодом полураспада.
    4. Чем гипотетически длительнее протон существовал в связанном состоянии в конкретном ядре, тем больше его энергия, заимствованная из среды и тем вероятнее самораспад протона с последующим распадом ядра.
    5. В исключительно редких случаях момент самораспада отдельного протона может опережать момент распада ядра атома, частью которого он являлся.
    6. Для обнаружения самораспада протона необходимо иметь массу вещества с самым длительным подтвержденным периодом полураспада ядер, но не массу вещества, ядра которого имеют какой-либо иной период полураспада (т.е. менее длительный или неопределенный).
    7. Практически бесконечно большое время жизни протона, очень вероятно, будет обнаружено в временном диапазоне 1030  1033 лет, что практически находится в пределах экспериментальных возможностей [С. Вайнберг, с.169].

    Расширенная версия настоящих тезисов направлена в редакцию сборника статей по результатам одной из научных конференций, полная версия будет в ближайшее время направлена в журнал "Метафизика".

    Литература:

    1. Ишханов Б.С. Радиоактивные распады атомных ядер // М.: МГУ, 2018. 170 с. (О распаде микрообъектов). (Купить в URSS)
    2. Шленов А.Г. О структуре элементарных частиц, атомных ядер, нейтронных звезд. 2005. (О нео эфире и о старении частиц в нём).
    3. Исупов Е.Л., Ишханов Б.С., Клименко В.А., Мошарев П.А. Глава 12. Распад протона // Протон / Под ред. Б.С. Ишханова. М.: КДУ, 2018. 170 с. (О самораспаде протона). (Скачать)
    4. Элемент теллур впервые обнаружен на звездах // dom-tehnika.ucoz.com, 23.02.2012 (О свойствах Теллура -128)
    5. Андрей Дмитриевич Сахаров и космология // modcos.com, 16.01.2012 (О концепциях распада протона А.Д. Сахарова и В.А. Рубакова)
    6. James Webb Space Telescope // Goddard Space Flight Center, jwst.nasa.gov (О последних орбитальных наблюдениях орбитального телескопа "Джеймс Уэбб", опровергающих СТО и ОТО).
    7. Годарев-Лозовский М.Г. Метатеория физической реальности // Проблемы исследования Вселенной. 2022. Т. 40(2). С. 19-22.  (Скачать) 
    8. Вайнберг С. (Weinberg S.) Распад протона // Успехи физических наук. 1982. Т.137, №5. С. 151-172. (Скачать)
    31 января 2023 г., Вторник, 19:00 Заседание № 786

    Вероятностное прогнозирование как фактор успешности в решении проблем человеком в ситуации выбора

    Ryabchikova N.AРябчикова Наталия Афанасьевна, Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.

    д.б.н., Инновационный центр Сколково, МГУ им. М.В. Ломоносова

    Любую деятельность человека можно представить как результат эволюции и общественного развития. В то же время учитывается особая форма взаимодействия с окружающей средой, где все большее значение приобретают высшие психические формы регуляции поведения.

    Поведение человека имеет активный, целенаправленный характер и связано с мышлением, речью, нравственно-этическими нормами и правилами. Поэтому особенность поведения человека необходимо рассматривать в природно-техногенном (биологическом) и социальном (психологическом) аспектах с учетом влияния совокупной, интегральной составляющей среды на общий статус человека.

    На современном этапе развития науки в области построения искусственного интеллекта возникли тенденции, связанные с попытками воспроизведения в механических системах ряда основных универсальных механизмов мышления человека.

    Однако, в философском аспекте, действительно ли математические методы тождественны объективной реальности или это лишь абстрактные умозрительные построения? Часто сложные математические конструкции оказываются весьма оторванными от отображаемой ими объективной реальности и иногда подменяют сущность формой, т.е. применение сложной математики может быть уходом от содержательных задач в область только формального описания.

    В реальной жизни обычно не бывает полной и достоверной информации о состоянии внешней среды и готового алгоритма для решения поставленной задачи. Может быть, «обучающаяся матрица» мозга путем прогнозирования выбирает правильные алгоритмы решения задачи. Так создается внутренняя модель внешнего мира, соответствующая реальной ситуации.

    Используемые в настоящее время разные модели оценки адекватности поведения человека (Д.А. Ширяев, 1986, Л.И. Переслени, 1990, Л.А. Регуш, 1997 и др.) отражают только те, или иные психологические или нейрофизиологические параметры, которые (каждый в отдельности) не дают полной и надежной информационной значимости различных данных при прогнозировании событий. Считается, что вероятностное прогнозирование является одной из форм интеллектуальной деятельности человека. Применение структурно-информационного подхода к анализу количественно - качественных показателей решения задачи позволяет не только изучить, но и выявить основные стратегии поведения человека в каждой конкретной ситуации.

    Нами была предложена и научно обоснована концептуальная модель функциональной структуры регуляции целенаправленного поведения человека. В рамках этой модели определялись типологические особенности и индивидуальные различия, с учетом механизмов его мозгового обеспечения, определяющие интеллектуальные возможности человека и позволяющие выбрать единственно правильный прогноз событий. Такой подход позволяет выбрать единственно правильный прогноза события, обеспечивающего успешность поведения человека в любой ситуации.

    В ходе экспериментов были сформулированы четкие правила переработки мозгом информации, которые, будучи формализованы математическими методами, легли в основу компьютерной программы «Прогнозис 2.5», способной оценить уровень интеллектуальных возможностей человека при решении задач в проблемной ситуации. Суть методики «Прогнозис 2.5» заключается в использовании когнитивных тестов для осуществления прогнозирования ожидаемых событий, т.е. как предвосхищение будущего с целью оптимизации поведения. Исследуется процесс прогнозирования испытуемым одного из двух возможных стимулов, которые предъявляет программа компьютера с учетом результатов предыдущей ситуации. Эффективность вероятностного прогнозирования определялась также с помощью методики Прогнозис 2.5, по соответствующим критериям.

    Анализ количественных (ошибки прогнозирования, времени выбора) и качественных (стратегии) показателей эффективности прогностической деятельности при использовании компьютерной психологической методики «Прогнозис» позволяет определить уровень развития таких психических функций, как внимание, память, восприятие, мышление, удовлетворительно коррелирующих с нейрофизиологическими маркерами работы головного мозга. Совокупность таких показателей служит основанием для определения индивидуальных различий и типов прогностической деятельности человека по соответствующим им критериям. В свою очередь, определение типов прогностической деятельности позволяет предсказать поведение человека в любой, что особенно важно, проблемной ситуации, требующей быстрого и правильного принятия решения. В итоге, по всем показателям определяется уровень интеллектуальных возможностей человека и его способность к принятию решений.

    Настоящее исследование выполнено в содружестве с Государственным бюджетным Научным Центром Неврологии, Федеральным государственным бюджетным образовательным учреждением высшего образования «Российский государственный педагогический университет им. А.И. Герцена», Санкт-Петербург и поддержано международными организациями Bodiflo LLC (USA & Australia), ITAG (USA), РФФИ грант 15-04-00598, № 99-04-48299.

    Публикации по теме доклада

    1. Ryabchikova N.A., Bez L.V., Chigaleichik L.A., Damyanovich E.V., Bazyan B.Kh. Saccadic eyes movements in patients with Parkinson's disease untreated // Abstracts of the X World asthma, allergy & COPD forum and the XXIII World congress on clinical medicine and immunorhebalitation (New York, USA, April 28 - May 1, 2017). International Journal on Immunorehabilitation. 2016. V. 18 №2. P. 131. (Скачать)
    2. Moskalenko Yu.E., Ryabchikova N.A. Correlation between human cognitive function and circulation processes // Abstracts of the XI World asthma, allergy and CORD forum (Barcelona, Spain, April 20-23, 2018). International Journal on Immunorehabilitation. 2018. V. 20 №2. P. 100. (Скачать)
    3. Moskalenko Y.E., Vardy T.M., Sabirov A., Kravchenko T.I., Riabchikova N.A., Uglova N.N. Quantitative analysis of intracranial volume slow-wave fluctuations // Academic Journal of Life Sciences. 2016. V. 2. №8. P. 50-60. (Скачать)
    4. Переслени Л.И., Рожкова Л.А., Рябчикова Н.А. О нейрофизиологических механизмах нарушения внимания у детей с трудностями обучения // Журн. высш. нервн. деят. 1990. Т. 40. №1. С. 37-44.
    5. Регуш Л.А. Психология прогнозирования: способность, ее развитие и диагностика. Киев. 1997. С. 5-23.
    6. Рябчикова Н.А., Шульговский В.В., Подьячева Психофизиологические особенности испытуемых с разной эффективностью вероятностно-прогностической деятельности // Журн. высш. нервн. деят. Т.51. №5. 2001. С. 552-557.
    7. Рябчикова Н.А., Подьячева Е.В., Томиловская Е.С. Системные механизмы прогностической деятельности человека как показатель его интеллектуальных возможностей. В сб. «Системные механизмы обучения и памяти». М., 1998. С. 267-271.
    8. Рябчикова Н.А., Шульговский В.В., Аджимолаев Т.А Особенности структуры алгоритмов поведения человека в формальных средах // Научно-технический журн. «Автоматика». АН УССР. Изд. «Наумова думка». 1989. №2. С. 57-61.
    9. Рябчикова Н.А., Сычев С.М., Базиян Б.Х. Искусственный интеллект в соотношении с когнитивными функциями головного мозга человека // Нейронаука для медицины и психологии: XVIII Международный междисциплинарный конгресс. Судак, Крым; 30 мая-10 июня 2022 г.: Труды Конгресса / Под ред. Е.В. Лосевой и Н.А. Логиновой. М.: МАКС Пресс, 2022. С. 290-291. (Скачать)
    10. Рябчикова Н.А., Базиян Б.Х., Ефимова В.Л. Взаимосвязь когнитивных процессов с нейрофизиологическими особенностями головного мозга // Нейронаука для медицины и психологии: XVII Международный междисциплинарный конгресс. Судак, Крым; 30 мая-10 июня 2021 г.: Труды Конгресса / Под ред. Е.В. Лосевой, А.В. Крючковой, Н.А. Логиновой. М.: МАКС Пресс, 2021. С. 325-326. (Скачать)
    11. Ryabchikova N.A., Baziyan B.Kh., Damyanovich E.V., Chigaleichik L.A. Probabilistic prognosis in human cognitive functions on problematic situations // Allergy, Asthma, COPD, Immunophysiology & Immunorehabilitology: Innovative Technologies. Filodiritto Editore, 2019. P. 267-275. (Скачать)
    12. Фейгенберг И.М., Иванников В.А. Вероятностное прогнозирование и преднастройка к движениям. М., Наука, 1978, 1-34, 112 с.
    13. Ширяев Д.А. Психофизиологические механизмы вероятностного прогнозирования. Рига. Зинятне. 1986. С. 3-110.
    14. Davidson R.J. EEG measury of cerebral asymmetry: conceptual and methodological issues // Internat. J. Neuroscience. 1988. V. 39. P. 71-89. (Скачать)
    15. Gale A., Haslum M., Penfold V. EEG correlates of stimulative expectancy and subjective estimates of alertness in vigilance-type task // Quart. J. Exp. Psychol. 1971. V. 23, №3, P. 245-254. (Скачать)
    16. Naatanen R., Lehtokoski A., Lennes MCheour M., Huotilainen M., Iivonen A. M., Alku P., Ilmoniemi R.J., Luuk A., Allik J., Sinkkonen J., Alho K. Language-specific phoneme representations revealed by electric and magne brain responses // Nature. 1997 Jan. 30. 385 (6615): 432-434. (Скачать)
    17. Raven, J., Raven, J.C. and Court, J. II. Manual for Raven`s Progressive Matrices and Vocabulary Scales. - 1995. - Section 1, General Overview. - Oxford, England: Oxford psychologists Press, Sail Antonio. - TX: The Psychological Corporation
    18. Рябчикова Н.А., Савельев А.В., Ефимова В.Л., Ефимов О.И., Халворсон П. (Halvorson P.), Сычев С.М. Математическая модель процесса решения человеком прогностической задачи в проблемной ситуации // Биомедицинская радиоэлектроника. 2015. №6. С. 21-25. (Скачать)
    17 января 2023 г., Вторник, 19:00

    Круглый стол "Восстановить приоритет эксперимента Н.А. Козырева"

    Чтобы не отклоняться от научных целей Семинара ИИПВ им А.П. Левича, считаем целесообразным вынести организационно-методические и другие многопрофильные дискуссии на независимую веб-площадку – "Форум за науку, образование и культуру".

    Первое заседание Форума за НОК проведем 17 января 2023 г. в 19-00 по персональному списку приглашенных для обсуждения оптимальных путей утверждения приоритета Н.А. Козырева (и отечественной науки) в пионерских замерах астро-нелокальности космического пространства в 1976 году, когда было продемонстрировано сразу три угловых отклика от разных положений одной и той же перемещающейся звезды. Обсудим эффективность написания коллективных писем по инстанциям, проведение онлайн голосований по согласованным опросникам и другие варианты приемлемых действий вплоть до слушаний проблемы замалчивания открытий в Общественной Палате РФ.

    Наша рабочая группа (РГ) по наследию Н.А. Козырева была сформирована 23 февраля 2021 г. на Круглом столе (КС) №731 (Шихобалов Л.С. – председатель, Арушанов М.Л., Булыженков И.Э., Киктенко Е.О., Козырев Ф.Н., Коротаев С.М.) и в 2021 году выпустила резолюцию о том, что нетрадиционные идеи Николай Александровича необходимо развивать экспериментально и теоретически. Члены РГ могут приглашать новых участников на закрытые заседания, а председатель РГ– кооптировать новых активистов в ее состав.
     

    Для подготовки к КС «Восстановить приоритет эксперимента Козырева» 17 января 2023 рекомендуем просмотреть, в частности, материалы наших научных семинаров №№ 731, 732, 733, 755, 756, 767 и две тематические статьи.

    О дистанционном воздействии звезд на резистор Астрономические наблюдения по методике Козырева и проблема мгновенной передачи сигнала